Innovation in stock optimization

BECOME AN INDUSTRY LEADER BY REDUCING YOUR INVENTORY WITH 50\%

Breda, 18 June 2015
5115X003 RK v1.0

WHY INVENTORY?

5 REASONS FOR KEEPING INVENTORY

Supply chain: from raw materials till consumer

Raw materials

Suppliers

Manufacturer

Distribution

Retail

Consumer

Supply chain: from raw materials till consumer

- Strategic: trading \& speculation
- Capacity: limited capacity requires stockbuild (e.g. seasonality)
- Order quantity: economic to order more than 1 pcs.
- Uncertainty: demand-, supply quantity and lead times
- Lead time: Coverage of lead time demand

The impact of inventory on Return On Investment

INVENTORY IMPACTS THE ASSET TURNOVER AND NET PROFIT MARGIN

DuPont chart: Inventory affects asset efficiency and net profit

Inventory reduction results in an increase of asset turnover and net profit margin. Meaning that the ROI is leveraged from both sides. A lean inventory is a key issue to become an industry leader.

Decision making process portfolio and stock mgmt. stock policy decisions and variables

Decisions

Item in portfolio (yes/no)

Variables

Customer needs, profitability, supplementary, etc.

Production lead time vs. customer requirements

Customer demand, volatility demand, transport costs

Supplier lead time, demand characteristics

Make-To-Stock vs. Make-To-Order (FMCG case)

QUADRANT ANALYSIS

Where to stock (central vs. local)

INVENTORY \& TRANSPORT COSTS

Inventory management scale

ASSES YOUR COMPANY INVENTORY MANAGEMENT MATURITY

Level of professionalism in inventory management

Symptoms	- Gut feeling inventory management - Many back orders - No idea about stock quantities and service level	- Days on inventory policies - Excel based computations - Inventory is monitored	- Basic statistic inventory calculations (P1) based on historic demand - ERP or Excel based computations - Inventory is monitored	- Demand and forecast planning - S\&OP processes - Single echelon inventory optimization (P2) - Inventory is monitored	- Demand and forecast planning - S\&OP processes - Multi-echelon inventory optimization - Inventory specialist
Service level:	50-60\%	60-80\%	80-95\%	Up to 99,9\%	Up to 99,9\%
Potential:	Base Case	Limited	20-30\%	30-50\%	> 50\%

Safety stock based on service levels and charges

SAFETY STOCK DECISION RULES

- Safety stock based on service levels:
- Specified Probability (P1) of No Stockout per Replenishment Cycle - Cycle Service Level.
- Specified Fraction (P2) of Demand to Be Satisfied Routinely from the Shelf - Fill Rate
- Specified Fraction of Time (P3) During Which Net Stock is Positive -Ready Rate
- Specified Average Time (TBS) Between Stockout Occasions
- Safety stock based on charge per unit short:
- Specified Fractional Cost (B1) per Stockout Occasion
- Specified Fractional Charge (B2) per Unit Short
- Specified Fractional Charge (B3) per Unit Short per Unit Time

Decision rules for (s, Q) control system (1/3)

ASSUMPTIONS AND NOTATION

Assumptions

1. Demand is probalistic but average demand is stable
2. A replenishment order Q is placed exactly at the order point s
3. Orders must be received in the same order as ordered
4. Forecast errors have a normal distribution with no bias
5. Q has been predetermined
6. The costs of the control system are independent of s

Notation

k safety factor
$p_{u \geq k}(k) \quad$ probability that a unit normal (mean 0 , standard deviation 1) variable takes on
a value of k or larger.
SS safety stock, in units
$X_{l} \quad$ forecast (or expected) demand over a replenishment lead time, in units
$\sigma_{l} \quad$ standard deviation of errors of forecasts over a replenishment lead time, in units

Decision rules for (s,Q) control system (2/3)

NORMALLY DISTRIBUTED FORECAST ERRORS

E

Decision rules for (s,Q) control system (3/3)

the rule

- Step 1: Select the safety factor k to satisfy

$$
p_{u \geq k}(k)=1-\mathrm{P}_{1}
$$

- Step 2: Calculate Safety stock

$$
\mathrm{SS}=k \sigma_{l}
$$

- Step 3: Calculate reorder point
$S=X_{l}+S S$ (increased to the next higher integer if not already exactly an integer)

Quick win of 20-30\% inventory reduction

STATISTICAL BASIC INVENTORY OPTIMIZATION

- Four steps

1. Historic demand data
2. Distribution fitting to lead time demand
3. Implementation of basic safety stock calculations
4. Calculate (and simulate)

- Frequent mistakes
- Incorrect formulas
- Excluding uncertainty in supply
- Misunderstanding of inventory position
- Best practices
- One year historic demand
- Weekly time buckets
- Frequency: twice per year

Customer Service Level: P1 vs. P2

DIFFERENCE BETWEEN P1 AND P2 EXPLAINED

Potential of $30-50 \%$ by using P2

BESIDES DEMAND AND FORECASTING PLANNING CAN REDUCE VARIANCE IN LEAD TIME

- Approach
- The approach of P1 is similar to P2
- Only a more complex distribution for the lead time demand is used
- P2 can be implemented in Excel, but its more difficult
- Frequent mistakes
- Using P1 in case of high order quantities leads to dead stock
- Forecast error which is higher than the variance in demand
- Best practices
- In case of high order quantities use P2
- Demand and forecast planning is key in lowering safety stocks

Multi-Echelon Inventory optimization

COMPLEX SUPPLY CHAINS WITH BILL OF MATERIALS

Bullwhip effect

FASHION EXAMPLE

Vendor Managed Inventory \& Collaborative Planning Concepts

Echelon Inventory Position

multi echelon concept

Echelon Inventory Position

Synchronized Base Stock Policy

AN EVOLUTION IN MATERIAL PLANNING

How it worked out for Philips

ELIMINATION OF THE BULLWHIP EFFECT

Figure 3: In a successful ramp-down at the end of the life cycle of a product, as a consequence of the new planning process, the gap between demand and supply decreased (first half of the graph), and then supply started following demand closely (second part of the graph) with almost no obsolescence at the end of the life cycle.

L-Pad Game

CHALLENGE AND TRIGGER YOUR SUPPLY CHAIN TEAM!

Where are you now and next year?

PLAY THE L-PAD GAME
Level of professionalism in inventory management

DRIVEN BY KNOWLEDGE

